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Natural human desire; an important goal in many 

applied sciences and business sections. 

Huge growth in predictive models and algorithms 

from Computer Science, Bioinformatics and 

Statistics.

An fundamental methodological issue is the 

quantification of models’ prediction performance. 

Prediction



Prediction loss and prediction error (Korn and 

Simon, 1990; Graf et al., 1999; Hothorn et al., 2006; Gneiting et 

al., 2007; Lawless and Yuan, 2010)

Concordance measure (Pencina and D’Agostino, 

2004)

ROC curve (Heagerty and Zheng, 2005, Cook 2007, Mann 

et al. 2010, Uno et al. 2011)

Measure of Prediction Performance
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Statistical Prediction

• Predict random variable Y given covariates Z for 

some population

– Denote true conditional distribution function of Y given Z 

• Training data 

• Modeling procedure (M)

– The final model is given by 

• Point predictor
e.g. 
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Prediction Error

• The prediction error depends on the model M

• The expectation is taken with respect to the Y

values in the independent new data, the training 

data D, and the distribution of covariates Z.
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Estimation of Prediction Error

• Test data based estimator

• Model based estimator

• Apparent loss + adjustment term

• Cross-validation loss
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• Assumption 

- Covariate Z is typically assumed to be uniformly 

distributed on the values (z1,…, zn) observed in D.

- The distribution of the covariates is the same in the 
new/future data as in the observed “training data” D
that were used to derive the predictive model.

• Problem
- In practice, the distributions of covariates in the training 

data (HD(Z)) and new data (HN(Z)) are often different.   

Changing Covariates Distribution
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Our Idea

Weighted estimator
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Zi is discrete;

Support of HN is contained in HD

where

Simple Case
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A Simple Example

Z 0 1 Sample size

Training data 20 10 n=30

New data 10 15 m=25
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1. Matching weights 

Nearest neighbor matching (Mahalanobis

distance)

Genetic matching (Generalized Mahalanobis

distance)

2. Kernel weights

Base the estimation of hN(z) on kernel smoothing

Approaches
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Distribution of Covariates

Simulation Setting 1

Distribution of Covariates 

Simulation Setting 2
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Ratio

Setting 1

Setting 2



Department of Public Health Sciences

• Distance measure

• Categorical variable

• Extension to higher dimension

• Real world example

Future work



Thank you




